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A general approach to the theoretical evaluation of the crystal lattice energy of ionic sub- 
stances, particularly those composed of monoatomic ions, is outlined in detail. Subsequently, 
the possibilities of theoretical prediction of the lattice energy of complex organic and inorganic 
ionic substances are discussed. Lastly, the importance of the lattice energy in examinations of 
the properties and behaviour of solid-state systems, is treated, together with the prospects of 
developing a model describing the kinetics of solid-state processes. 
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General problems 

The crystal lattice energy (Ec) is the most important thermochemical charac- 
teristic accounting for the structure, properties and behaviour of solids. It is 
generally defined as the amount of energy which has to be supplied to transfer the 
species from the crystal lattice to the gaseous phase, where no interactions occur. 
This means that the crystal lattice energy reflects the magnitude of cohesive for- 
ces keeping the species in the solid phase, or in other words it determines the 
energy of interaction between the species in the solid phase. 

In the case of molecular crystals, where the species in the solid and gaseous 
phases are the same molecules, the lattice energy is simply the sublimation ener- 
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gy. For such substances, this quantity can be measured directly. When one deals 
with ionic substances, the situation is changed, since the species existing and in- 
teracting in the solid phase are actually the ions. In this latter case, our considera- 
tions concern the energy which must be provided to transfer ions from the lattice 
to the gaseous phase. If an ionic substance is given by the general formula KmAn, 
then the crystal lattice energy is defined as the energy change for the process [1] 

KmAn(e)---) mK~(~r) + + nA~- (1) 

where 1~ is the multiplier accounting for the actual valence of both ions. Unfor- 
tunately, the values of the lattice energy of ionic substances cannot be determined 
directly. They can, however, be obtained on the basis of the Hess law (appropriate 
thermochemical cycle), using values of other measurable quantities [1-3]. Equa- 
tion (1) is significant therefore, if one uses data of experimental origin for deter- 
mination of the Ec of ionic substances. 

Theoretical predictions of lattice energy 

As mentioned above, a solid phase exists as a result of attractive and repulsive 
interactions between the species forming the lattice. It is generally recognized 
that these interactions contribute to the crystal lattice energy in the form of four 
effects, which constitute Eqo (2) [4-6] 

Ec = - E e l  + E r  - Ed + E0 (2) 

where Eel represents the electrostatic (Coulombic) interactions between charged 
centres, Er the repulsive interactions, Ea the van der Waals interactions (disper- 
sive interactions) and Eo the zero-point energy. 

In the case of molecular crystals, it may be expected that all four terms in Eq. 
(2) are significant in the determination of the lattice energy. In ionic substances, 
which will be the subject of further considerations, the terms Er and Ed do not 
usually exceed 10 per cent of the value of Eet and, since they have opposite signs, 
their sum becomes negligible [5, 7, 8]. Also, the term Eo is negligible in com- 
parison with any other term in Eq. (2) [8, 9]. Therefore, for ionic substances, -Eel 
describes the crystal lattice energy reasonably well. 

The electrostatic energy of 1 mol of an ionic substance composed of structural 
units (KI3n+)m(AI3m')n is defined by the equation [1] 

1 
eo, = $ NA + > I 

(3) 
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where NA is the Avogadro number, while the factor 1/2 eliminates duplication of 
the electrostatic interactions. The terms Ep 0~)  and E~ m-) in Eq. (3) express the 
potential energies which result from the interactions of a single cation and anion, 
respectively, with all other ions in the lattice. The potential energy, on the other 
hand, is determined by the product of the actual charge of an ion and the poten- 
tial(Vp) created at the site of its location by all other ions in the lattice [1]. With 
this in mind, Eq. (3) can be written in the form 

1 
Eel = -~NA [m ([~n+)e~lv~n+) + n ([~m-)e~lV~ m-) ] (4) 

where eel denotes the elementary charge. The problem of evaluating the electros- 
tatic energy is therefore reduced to the calculation of V~ pn+) and Vp tl~-) 

Methods of Coulombic energy (electrostatic potential) evaluation 

It can be assumed, to a first approximation, that the charges are situated at the 
points of location of atoms in the crystal lattice. In such a case, we are dealing 
with an infinite lattice of charges. The electrostatic potential (V <zi)) at site i (at 
which a net charge Zi is located), taken as the origin of the coordinate system, can 
then be evaluated by using the basic equation 

V(~) - 1 s  A (5) 
4neo . r i j  

where Zj is the net charge at site j, which is situated at a distance rij from site i. All 
lattices of interest to chemists are heteroionic. The summation therefore extends 
over all positive and negative ionic centres (n), excluding, of course, site i. Since 
the charged centres in the lattice are located periodically, the expression for the 
potential presents a series which always converges poorly. To calculate the 
electrostatic potential, several approaches have been proposed in the past [10- 
16]. Of these, the Ewald method is the one most often considered [11]. The 

r l I I I 

A B C 
Fig. 1 The schematic representation of the imaginary Bravais lattices of a given type of 

charges (A and B) and their superposition (C) 
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method is based on the assumption that the part of an electrostatic potential 
caused by a certain type of ions (positive or negative) is a superposition of the 
components of two imaginary Bravais lattices of charges (Fig. 1) [11, 17]. The 
first of these lattices forms a three-dimensional system normalized to [ 1 [ Gaus- 
sian functions (centred at the locations of point charges) and neutralized by a 
uniform charge distribution of opposite sign (Fig. 1A), whereas the second is a 
lattice of actual unit point charges neutralized by corresponding three-dimen- 
sional Gaussian functions of opposite sign (Fig. 1B). For complementary ions, 
similar Bravais lattices can be considered. In the final expression for the potential 
at site i (given below by Eq. (6)) due to the monopoles of both types at sites j ,  the 
Fourier representations of both two-component Bravais lattices corresponding to 
negative and positive ions are combined, which results, on appropriate choice of 
the half-width of the Gaussian function, in the rapid convergence of pairs of these 
series [11, 15]. 

I F (h) nh 2 ] V(z~)_ I___~_ 1 ~__Ti_exp(L_T2 ]_2xzie~l+ y__zje~lerfc(~xrij) 
- 4rmo ~ h=O h ~, • ) J~ rij 

(6) 

In Eq. (6), eo denotes the permittivity of free space; V is the volume of a unit 
cell; h is a vector in reciprocal space; F(h) represents the Coulombic structure 
factor 

F (h) = ~ zser (2~hris) 
$ 

with s running over a unit cell with its origin at site i; ~c is the convergence 
parameter to obtain optimal convergence of the series (it is often assumed that 
~:=V1/3); rij (ris) is, as mentioned above, the distance vector between the origin site 
i(rij = 0; ris = 0) and the sitej (s) with charges Zj = zj.eel (Zs= zs.eel), where zj and zs 
denote relative charges; and 

erfc = ~ -  J'exp (-t2)dt 
x 

is the complementary error function. In Eq. (6), the symbol Eh = 0 indicates sum- 
mation over reciprocal space, whereas Zj~(~) indicates summation over the real 
lattice, rij(ris) = 0 being omitted, of course. 

A certain physical meaning can be ascribed to the terms on the right-hand side 
of Eq. (6). The first term describes the potential created at site i by all other 
charged sites. The second denotes the 'self-energy', and results from the fact that 
the distributed charge itself creates a potential at the site of its location. The third 
accounts for the effect of the overlapping of Gaussian distributions of charges. 
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The Ewald method holds a certain mathematical 'trick', which brings about a 
better convergence of lattice sums which occur, among others, in expressions for 
the lattice potential. This 'trick' comes down to the assumption that the point 
charge can be represented by the three-dimensional Gaussian function. Bertaut 
later showed that many other functions mathematical functions can be used for 
this purpose [15]. The application of other functions leads to very similar values 
of lattice sums [9, 15]. However, as Jenkins and Pratt [18] have demonstrated, a 
Gaussian distribution function characterizes a high convergence of lattice sum 
series. 

After the above presentation, the question can be raised as to the real charge 
distribution in the lattice. The assumption as to the location of point charges at the 
positions of atoms forms a convenient framework on which to consider many fea- 
tures of solid substances. This assumption is also often made to consider chemical 
features of the matter at a molecular level. On the other hand, the assumption 
made by Ewald that charge is diffused around the sites of location of ions does 
not seem to be only artificial. It might also have some physical significance. One 
should remember, however, that a mathematical procedure based on the super- 
position of two Bravais lattices of charges helps only in performing calculations. 

Application of the Ewald method 

The Ewald method was originally developed to calculate the electrostatic 
potential (lattice sums) for crystals composed of monoatomic ions. The applica- 
tion of this method to solids containing polyatomic ions requires additional as- 
sumptions. These are: 

(i) in the species constituting the simplest formula unit of the molecule, one 
distinguishes positive and negative fragments; 

(ii) to each fragment one ascribes, as a first approximation, charges which are 
whole multiples of eel; 

(iii) it is assumed that within each such fragment a charge is distributed among 
all the atoms forming it, or is placed on certain chosen atoms; 

(iv) it is further assumed that each partial charge contributes to the electros- 
tatic potential (i.e. is considered independently in the calculations); 

(v) lastly, the electrostatic potential is determined at the sites of the location of 
each partial charge (atom) of a given fragment, with the elimination on of partial 
charges ascribed to the remaining atoms forming the fragment. 

To evaluate the crystal lattice energy of any substance, information on its 
solid-phase structure is necessary. Most structural data for organic ionic substan- 
ces originate from X-ray diffraction studies. These are gathered in the 
Cambridge Structural Database System [19, 20]. In some cases, however, the in- 
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formation is incomplete. One can then evaluate unknown positions of atoms by 
the careful employment of quantum-chemistry methods [21, 24]. 

The distribution of charge between the atoms in complex ions can sometimes 
be guessed by using values of certain physicochemical quantities. This was done, 

among others, in the case of octahedral MX~- ions (M = metal(IV) and X = 
halogen) [5]. For the purpose of crystal lattice energy calculations, this informa- 
tion can also be obtained by employing quantum-chemistry methods. In several 
recent papers, we have done this for numerous nitrogen organic bases by using 
the INDO [25] and MNDO [26] methods [21-24]. These calculations revealed 
that the excess of negative charge usually occurs on N and sometimes C atoms. 
This means that the charge is distributed following the electronegativity of the 
atoms forming the complex ions. The examination of theoretical charge distribu- 
tions therefore gives the impression that N and C atoms form the core gathering 
the excess of charge, surrounded by a layer containing H atoms exhibiting a 
deficiency of charge. This finding does not correlate with our traditional belief 
that the (1+) charge which comes with H § or other ions upon formation of the cat- 
ion remains on the neighbouring N atom. 

@ @ 

A �9 B e e 

| t" 

C 5< D 

Fig. 2 Geometries of conglomerates of NI-I~ ...Br- (A), (NI~ ...8Br-) 7- (B), (NI~ ...6NH~ )7+ 
(C), and (NI~ ...8Br-, 6NH~ )- (O) 

The above approach provides the charge distributions for isolated cations. In 
the solid phase, a given ion is part of the whole lattice. It would therefore be in- 
teresting to know how far the inclusion of the surroundings of an ion affects the 
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charge distributions predicted by quantum-chemistry methods [23]. The mag- 
nitude of this effect can be evaluated by considering supermolecules formed of a 
given complex ion and surrounding ionic fragments. Unfortunately, the capability 
of commonly available computers is such that this estimation is possible only for 

very simple complex salts. Figure 2 shows ionic conglomerates of NI-g sur- 

rounded by neighbouring Br- and NI-~ in the NI-hBr lattice [4]. For such con- 
glomerates, the distribution of charge between the atoms was evaluated by using 
the AM1 quantum-chemistry method [27]. The results obtained (Table 1) reveal 
that the charge on the ionic fragments, i.e. NI-~ and Br-, is predicted to be lower 
than primarily assumed (1+ or 1-). The surroundings also affect the relative 
values of the net atomic charges on the atoms in NI-~. The net charges on the 
atoms of the fragments of a crystalline substance are their characteristic feature, 
and form the necessary basis for lattice energy calculations. Quantum-chemistry 
methods seem to be most reliable for the prediction of these characteristics. How- 
ever, various methods and approaches provide different values. Therefore, the 
distribution of charge is sometimes assumed arbitrarily [5, 28]. This has also been 
done here, assuming that a 1+ charge is located on the N atom of mononitrogen 
organic bases. 

Table 1 Influence of  surroundings on charge distribution in the NH4Br lattice (calculated by 
AM1 method) 

Species Atom 

Formula Figure N H Br a 

NH~ -0.0888 0.2722 -1 .0  

NI-I~ ... Br -  3A -0.0798 0.2532 -0.9330* 

(NI-I~ ... 8Br-) 7- 3B -0.0873 0.2539 -0.9283* 

(NI-I~ ... 6 N I ~  )7+ 3C -0.1132 0.2781 -0.9992* 

(NI-I~ ... 8Br- ,  6Nl-fi)- 3D -0.1334 0.2526 -0.8770* 

I Values marked with an asterisk (*) denote the complementary negative charge to the total posi- 
tive charge evaluated for ammonium ion. They do not result from the calculations. 

Examples of crystal lattice energy calculations 

The data presented in Table 2, as well as those for many other salts of 
mononitrogen organic bases [21-24], reveal that the Coulombic energy values 
evaluated theoretically compare quite well with the crystal lattice energies ob- 
tained from the thermochemical cycle. The method of evaluation of the charge 
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distribution in the cation has only a minor effect on the Coulombic energy. On the 
other hand, if the influence of the surroundings of the ion upon the charge dis- 
tribution evaluation is taken into account, the calculated Coulombic energies 
decrease (Table 3), which is mostly due to the decrease in the overall charge on 
ionic fragments (Table 1) [23]. It is also very interesting that Coulombic energies 
obtained with an arbitrarily assumed unit charge on the N atom in the cation cor- 
relate surprisingly well with the experimentally found crystal lattice energies. 

Table 2 Crystal lattice energies (kJ/mol) of salts of mononitrogen organic bases 

Lattice energy 

Compound Coulombic energy Lit b 

Method of charge distribution evaluation in the cation 

INDO MNDO N-X a 

[CH3NH3]CI c 688 688 704 656 

[C6Hi1NH3]CI c 609 611 660 636 

[C5H10NH2]C1 c 588 588 636 626 

[(CH3)4N]Br d 523 523 525 533 

[(n-CaH7)4N]Br d 425 428 460 423 

[C6HsNH3]Br d 568 589 656 

[(CH3)4N]I e 505 505 506 506 

[(CH3)3NH]I e 538 535 551 565 

[C2HsNH3]2SnC16 f 1116 1169 1133 1191 

[(CH3)2NH2]2SnC16 f 1247 1229 1281 1275 

[(CH3)2NH2]2PtC16 g 1312 1313 1237 

[CsHsNH]2SnBr6 h 1131 1127 1177 

a Location of +I charge at N atom. 
b 

See references cited in refs (21)-(24). 

e Ref. (23). 
d 

ReL (22). 

e Ref. (21). 

f Ref. (24) 

g This work; charge distribution in PtC162-: Pt(+0.64), C1(-0.44) [5]. 

h This work; charge distribution in SnBr6~ Sn(+1.60), Br(-0.66) [5]. 

The location of the 1+ charge on the N atom of the protonated base is rather artifi- 
cial. We have therefore tried to find some kind of physical significance for the 
fact that such a simple assumption leads to correct values of the electrostatic ener- 
gy. An explanation which seems reliable results from examination of the electros- 
tatic potential around the charged species. Calculations have shown that this 
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potential has a spherical symmetry around even very complex ions at distances 
where other ions occur in the lattice. Only at a close distance from the molecule 
is this symmetry disturbed. This means that a given complex ion is 'seen' by sur- 
rounding ions in the crystal lattice to be similar to a monoatomic ion (around 
which the electrostatic potential always exhibits spherical di~ibution). Such a 
spherical electrostatic potential around the complex ion could be considered to 
result from a unit positive charge located at some centre of theeh~ge. It is rather 
accidental that for the cations of nitrogen organic bases this centre-correlates with 
the location of N atoms. 

Table 3 Crystal lattice energy (k.l/mol) of NH4Br calculated for various charge distributions 

Species Eel Lit(Er 

NH~ 706.2 615 [30] 

712, 711,707, 697 [22] 633 [31] 

691 [291 644 [32] 
NI-I~/...Br- 614.7 654, 670 [33] 

(NI~ ... 8Br-) 7- 608.6 661 [34] 

(NI~ ... 6NI-I~ )7+ 706.5 682 [35] 

(NI-I~ ... 8Br-, 6NI-I~ )- 543.7 

Importance of lattice energy in examinations of properties and behaviour of 
solids 

Since the crystal lattice energy reflects the magnitude of the cohesive energy 
in the solid phase, it should determine most features of solids, such as structure, 
physicochemical properties, volatility, capability of undergoing phase transitions 
and, what is most important, their reactivity in the solid phase. First of all, this 
latter problem is of great interest to chemists. All quantum-chemistry methods 
currently used permit the examination of chemical reactions in which isolated 
molecules participate. For study of the reactivity of solids, the energy of the sys- 
tem must refer to the solid phase. This requires consideration of the interaction 
between molecules in this phase. In other words, on lowering the energy of iso- 
lated molecules by the crystal lattice energy, one finds the system in the ground 
state relative to which any considerations regarding chemical processes should be 
made. The problem of reactivity is inseparably associated with the problem of 
reaction mechanism and kinetics. As regards solid-state systems, much attention 
has been devoted in the past to developing a model for the description of the reac- 
tion kinetics [36-38]. So far, all approaches are based on the phenomenological 
Arrhenius equation [39], which was primarily proposed for gaseous reactions. For 
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solid-state processes, the basic kinetic relationship for isothermal conditions is 
given by the differential equation [36-38] 

da Ea 
dt - f ( 1  - a ) B exp [-~-~ ] (7) 

where R is the gas constant; ~ is the extent of reaction; t and T express time and 
temperature (constant), respectively; and B and Ea are the Arrhenius constants (in 
the case of gaseous reactions, Ea is identified with the activation barrier for the 
process and B with the frequency factor).f(1-o0 in Eq. (7) is a function describing 
the kinetic model for the process, or, in other words, the reaction mechanism. At 
our present level of knowledge we are able to predict what is called the reaction 
pathway, employing quantum-chemistry methods, but only for reactions in the 
gaseous phase. This affords us an insight into the changes which occur in the sys- 
tem at the molecular level. Therefore, such calculations allow verification of the 
phenomenological description of reaction kinetics based on the Arrhenius model. 
Moreover, it is possible to predict the activation barrier for the process and calcu- 
late the rate of reaction and consequently the extent of reaction as a function of 
time and temperature. Such possibilities do not yet exist for reactions proceeding 
in the solid phase. We believe, however, that a combination of quantum- 
chemistry procedures, predicting the energy of molecules and the pathways of 
reactions in which they participate, with methods of evaluation of crystal lattice 
energy should provide information on the mechanism of processes occurring in 
the solid phase. Furthermore, the extension of theoretical methods of prediction 

kA I< B 

A >B >C 

A Hf = -709.9 k J/tool 

I H2CO 3 �9 

E=~ = 277.9 kJ/mol CO 

A Hr I = 55.5 k J/tool 

'/t C02 �9 H20 

E.2= 249.5 k J/tool T 

1 
A Hr2 = 48,9 k J/tool 

1 
Fig. 3 The route of oxalic acid (A) decomposition through primary CO elimination and 

consecutive carbonic acid dissociation (B and C represent transition state structures 
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of rate constants in the gaseous phase, e.g. the RRKM method [40], should in fu- 
ture provide possibilities of theoretical analysis of the kinetics of solid-phase 
processes. 

To give some idea as to how this could be done, we present below a complete 
theoretical treatment of the kinetics of thermal decomposition of oxalic acid in 
the gaseous phase. This example was chosen since the calcium salt of the acid is 
widely used as a standard in thermal analysis. 

kA k B 

A >B 

T 
E,I �9 343.3 k J/tool 

AHr = -709.9 k J/tool 

>C 

T-  CO + H20 

E~-- 315.5 k J/tool 

T 
A H, 4 = -31.4 k J/tool 

J, 
HCOOH �9 C0 2 

Fig. 4 The route of oxalic acid (A) decomposition through primary CO2 elimination and 
consecutive formic acid dissociation (B and C represent transition state structures for 
both latter processes) 

The lowest-energy structure of oxalic acid, together with the structures of the 
molecule in the transition states (saddle points) for the thermal decomposition, 
are shown in Figs 3 and 4. The AM1 method [27] used for these calculations 
predicts that the substrate molecule admits a conformation with two internal 
hydrogen-bonds (indicated by dashed lines). It can be expected that the primary 
step in the thermal decomposition of oxalic acid is the elimination of either CO or 
COz as fragments. AM1 reveals that the primary elimination of CO is energetical- 
ly favourable. As the secondary step, the consecutive decomposition of the result- 
ing molecule (HO)2CO can be expected. The pathway demonstrated in Fig. 3 
therefore determines the overall kinetics of decomposition. To evaluate the extent 
of oxalic acid decomposition as a function of temperature and time theoretically, 
one has to know the rate constants corresponding to each reaction step. These 
were derived by using Eq. (8), resulting from the RRKM method [40]: 
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, /= )  
L § ( e0 ) r ( ~  exp - 

i 

(8) 

where 

L + e ( ~  k ~ ( e ) = - -  
UAh U(e;)  

In Eq. (8), NA, h, R, and T are the Avogadro number, the Planck constant, the gas 
constant and temperature, respectively; Qv is the partition function; L + is the reac- 
tion-path degeneracy (equal to 4 in the case of CO elimination, and 2 for 
(HO)2CO dissociation); E0 is the critical energy (taken to be 277.9 kJ/mol for CO 
elimination and 249.5 kJ/mol for (HO)2CO decomposition); P (E~v) and N (Ev) 

express sums and densities of states (values of Qv, e (E-~) and N (E~,) were 
evaluated on the basis of known procedures [40], using vibrational frequencies 
for the oxalic acid and (HO)2CO molecules in the ground and transition states, 
derived by AM1); the term ~,i~qBiPi denotes the collision rate constants and its 
value can be derived on the basis of the collision theory of gased (~ is the ef- 
ficiency of collisions, assumed to be equal to 1; Bi is the frequency of two-centre 

o 4 

%?. 

/ 

-"-~f--1 'u:P'~ 

/ 

Fig. 5 Predicted extent of  oxalic acid decomposition (in mass fraction) in a function of  time 
at various constant temperatures 
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collisions - the diameters (in nm) of the oxalic acid and (HO)2CO molecules were 
taken to be 0.700 and 0.615, respectively [41]; Pi is the pressure of a given com- 
ponent of the reaction mixture). 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 
750 

@ 

I / , , ' /  

//, ' , ' /  
, , , , , 

8OO 850 900 950 1000 

~, K/min 

1 
3 

I0 
20 . . . . . . . . . . . . . . . .  

I 
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r / K /  
Fig. 6 Predicted extent of  oxalic acid decomposition (in mass fraction) in non-isothermal 

conditions at different heating rates 

To visualize the expected changes in the system due to the thermal processes, 
the extent of decomposition as a function of time and temperature is presented in 
Figs 5 and 6. These dependences were derived by assuming that 1 mol of oxalic 
acid is closed in a cell which is immersed in a bath of gas whose pressure is con- 
stant at 1.03-105 N/m 2. The walls of the cell are assumed to be such that at any 
moment the pressure inside the cell is the same as that outside. Moreover, it is as- 
sumed that the final reaction products, i.e. CO, H20 and CO2, can migrate freely 
through the walls to the outside. This means that, with increase of the extent of 
reactions, the volume of the cell decreases to 0. Under such conditions, the only 
important encounters are those between oxalic acid and carbonic acid molecules. 
It is further assumed in the model that the whole system reaches a given tempera- 
ture instantaneously, which implies that the heat and mass transport are both real- 
ized instantaneously, with the except of restrictions regarding the mass transport 
mentioned above. It may therefore be considered that under such conditions, 
merely the kinetics of the chemical reactions determine the overall change in the 
system. 
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The above conditions of realization of the thermal processes can be identified 
with those prevailing for thermal analyses in open systems (e.g. in the derivato- 
graph). 

The curves of a vs. time (t) or temperature (T) shown in Figs 5 and 6 were 
found by using Eq (9), derived on the basis of the classical rate equations for con- 
secutive unimolecular reactions [1] and material balances for the decomposition 
process 

(no)tT, (1 ~ * " ' "  - e )M,o 
t,T 

0~= 
n~ (COOHh 

E n0 ( B)t,T kB ((n~ kA 
(n~ 1 + nO - -  e -~ ' -  nO - -  e -st M(Ho)~co 

"1- t,T ( A)t,T kB-kA ~( A)t,X kB- kA 
~ (lo) 

nA (COO/~2 

where kA and ks are the unimolecular rate constants, dependent on the tempera- 
ture and composition of a reactant mixture (calculated via Eq. (8) for decar- 

bonylation and carbonic acid decomposition, respectively (Fig. 3)); n ~ is the ini- 

tial amount of substrate (in our case n ~ is always equal to 1 mol); (nO)t,T and 

(nO)t,T are the initial amounts of substrate and intermediate species, respectively, 
before a given iteration; and Moo, Mffio)~co and M~cooI~2 are the molar masses of 
the molecules indicated in the subscripts. The curves is Fig. 5 can be identified 
with isothermal thermogravimetric curves. On the other hand, the dependences 
demonstrated in Fig. 6 can be related to non-isothermal TG curves. Both above 
dependences were evaluated by the iterative procedure which assumed step-by- 
step realization of the process. This procedure permitted calculation of the 
amount of substrate depleted in the first unit of time (or temperature), the instan- 
taneous change of time or temperature (according to the rate of its increase), and 
adjustment of the amount of reactants in the system. 

The question could be asked: When shall we be able to derive such curves for 
reactions proceeding in the solid phase? The answer is not simple, since we are 
still at the initial stages. Nevertheless, the outlined route seems to be the only one 
that affords an insight into the chemical changes in solid systems at a molecular 
level. The phenomenological approach to the investigation of reaction pathways 
(reaction mechanism) and kinetics, though very useful in solving many applica- 
tive problems, is not able to provide information on the nature of solid-phase 
chemical processes. 

, , gt 
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Zusammenfassung - -  Es wird eine allgemeine Methode zur theoretisehen Ableitung der Kris- 
tallgitterenergie von ionisehen Verbindungen, insbesondere von Verbindungen mit einatomigen 
Ionen beschrieben. Anschliel~end werden die M6glichkeiten einer theoretischen Voraussage der 
Gitterenergie komplexer organischer und anorganischer Ionenverbindungen diskutiert. Zuletzt 
wird die Bedeutung der Gitterenergie bei der Untersuchung der Eigenschaften und des Verhal- 
tens yon Feststoffsystemen im Zusammenhang mit der Aussicht auf die Entwicklung eines 
Modelles zur Beschreibung der Kinetik yon Feststoffprozessen gezeigt. 
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